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Abstract

We analyze a proper time renormalization group equation for Quantum Einstein Gravity in the

Einstein-Hilbert truncation and compare its predictions to those of the conceptually different ex-

act renormalization group equation of the effective average action. We employ a smooth infrared

regulator of a special type which is known to give rise to extremely precise critical exponents in

scalar theories. We find perfect consistency between the proper time and the average action renor-

malization group equations. In particular the proper time equation, too, predicts the existence of

a non-Gaussian fixed point as it is necessary for the conjectured nonperturbative renormalizability

of Quantum Einstein Gravity.

PACS numbers: 11.10.Hi,04.60.-m,11.15.Tk



I. INTRODUCTION

Recently a lot of work went into the exploration of the Wilsonian renormalization group

(RG) flow of Quantum Einstein Gravity [1, 2, 3, 4, 5, 6, 7, 8, 9] and its possible impact

on black holes and cosmology [10, 11, 12, 13, 14, 15, 16]. By definition, Quantum Ein-

stein Gravity (QEG) is the conjectured quantum field theory of the spacetime metric whose

bare action is (infinitesimally close to) an ultraviolet (UV) attractive non-Gaussian fixed

point of the RG flow. As outlined by S.Weinberg long ago [17] this theory would be non-

perturbatively renormalizable or “asymptotically safe” and, most probably, predictive and

internally consistent even at the shortest sub-Planckian distances. Most of the existing RG

calculations were performed within the framework of the exact RG equation pertaining to

the effective average action [18, 19, 20], applied to a truncated space of action functionals

(theory space). It turned out that the UV fixed point necessary for asymptotic safety does

indeed exist within the Einstein-Hilbert [3, 4, 6] and the R2-truncation [5], and detailed

analyses of the reliability of those approximations [3, 5] revealed that the fixed point found

is unlikely to be a truncation artifact. But clearly it is necessary to collect further evidence

for its existence at the exact level, both within the effective average action formalism (by

generalizing the truncation) and with conceptually independent methods.

In fact, a conceptually independent support of the asymptotic safety conjecture comes

form the work of Forgács and Niedermaier [21] who were able to analyze the path integral

over the metrics with two Killing vectors exactly and to show that at least this sector is

asymptotically safe. In view of recent progress [22] on causal, i.e. Lorentzian dynamical

triangulations [23] one also might hope that it will soon be possible to compare the analytical

results to Monte Carlo data.

In the present paper we are going to analyze the non-Gaussian fixed point of QEG using

the “proper time renormalization group” which has been extensively used for other theo-

ries recently [24, 25, 26, 27]. While this formalism is less complete and systematic than

the exact RG equation of the average action [20], it has had quite spectacular successes in

high precision calculations of critical exponents [25]. Even though, at the technical level,

the proper time method is reminiscent of the average action approach, it is well known [26]

that the proper time RG equation is not a special case of the exact RG equation of the

average action; it is conceptually independent in this sense. The approach we are going to



use implements a certain RG improvement of one-loop perturbation-theory, employing an

infrared (IR)-regularized proper time representation of the corresponding one-loop determi-

nants. We shall derive a flow equation for the scale dependent gravitational action from it

whose structure is quite different from that of the exact RG equation of the average action,

for every possible choice of its built-in cutoff operator Rk [19]. Apart from the conceptual

independence the main motivation for the present analysis are the remarkably precise criti-

cal exponents which have been obtained for the Wilson-Fisher fixed point with this method

[25]. In fact, we shall be mostly interested in the universal properties of the non-Gaussian

fixed point of QEG, (g∗, λ∗), in particular its critical exponents θ′ and θ′′ and the product

g∗λ∗.

II. THE PROPER TIME FLOW EQUATION

The ultimate goal of the RG approach would be the calculation of the integral Z =
∫
Dγµν exp(−S[γµν ]) over all metrics γµν where S is an arbitrary bare action, invariant under

general coordinate transformations. We are going to employ the background field formalism

and start by writing γµν as a background ḡµν plus a (not necessarily small) fluctuation:

γµν = ḡµν + hµν . Furthermore, we gauge fix the path integral by adding gauge fixing and

ghost terms to S. We use an a priori arbitrary gauge fixing term Sgf [h; g] of the background-

type, meaning that it is invariant under a combined transformation of hµν and ḡµν . This

property will guarantee that the effective action becomes invariant under general coordinates

transformation. Thus, denoting the Faddeev-Popov ghosts by Cµ and C̄µ, and their action

by Sgh[h, C, C̄; ḡ], the path integral reads Z =
∫
DhDCDC̄ exp(−S[ḡ+h]−Sgf −Sgh). Next

we couple hµν to a source, Legendre transform ln Z in the usual way, and thus obtain the

effective action Γ[h̄; ḡ]. Here h̄µν ≡ 〈hµν〉 is the expectation value of the fluctuation. The

corresponding expectation value of the complete metric will be obtained by gµν = 〈γµν〉 ≡
ḡµν + h̄µν . It is customary to consider Γ a functional of g and ḡ rather than h̄ and ḡ, and

to define Γ[g, ḡ] ≡ Γ[h̄ = g − ḡ; ḡ]. As always in the background formalism [1, 20, 28]

the “ordinary” effective action, the generating functional of one-particle irreducible Green’s

functions, Γ[g], is obtained by setting h̄ = 0 or ḡ = g: Γ[g] = Γ[g, g] ≡ Γ[h̄ = 0; ḡ].

As in every field theory, the one-loop correction to the effective action is given by a set



of determinants:

Γ1[g, ḡ] =
1

2
ln det Ŝ(2) − ln det S

(2)
gh (1)

Here we set Ŝ[h̄; g] ≡ S[ḡ+ h̄]+Sgf [h̄; ḡ] and Ŝ(2) denotes the matrix of the second functional

derivatives of Ŝ with respect to h̄µν , and likewise for the ghosts.

In order to evaluate ln det Ω = Tr ln Ω for Ω = Ŝ(2) and S
(2)
gh we use the proper time repre-

sentation Tr ln Ω = −
∫

∞

0
(ds/s) Tr exp(−sΩ). We regularize the short-distance singularities

of this expression by introducing a UV cutoff Λ which suppresses the contributions to the

s-integral with s . Λ−2. Furthermore, in order to set up a Wilsonian RG equation, we also

introduce a IR cutoff k which suppresses the contributions due to large proper times s & k−2.

In principle one could employ a sharp proper time cutoff which amounts to replacing
∫
∞

0
ds

with
∫ 1/k2

1/Λ2 ds. In this paper we use instead a more general class of proper time cutoffs.

One writes Tr[ln Ω]reg = −Tr
∫
∞

0
fk(s) exp(−sΩ) where the shape of the function fk(s) is

chosen such that it interpolates smoothly between fk(s) ≈ 0 for s ≫ k−2 and fk(s) ≈ 1 for

s ≪ k−2, and similarly in the UV. Actually the UV cutoff will play no role in that follows

since we shall concentrate on the k-derivative of the regularized determinant. Introducing

the “RG-time” t = ln k we have

∂tTr[ln Ω]reg = −Tr

∫
∞

0

ds

s
∂tfk(s) exp(−sΩ) (2)

For an appropriately chosen fk(s) the scale derivative ∂tfk(s) is independent of Λ. Hence,

at the level of (2), we may safely perform the limit Λ → ∞.

For actual calculations we shall use the following one-parameter family of smooth cutoffs

fk ≡ fm
k which has been extensively used in the literature [24], in particular in high precision

calculation of the critical exponents1 [25]:

fm
k (s) =

Γ(m + 1,Zsk2) − Γ(m + 1,ZsΛ2)

Γ(m + 1)
(3)

Here m is an arbitrary real, positive parameter which controls the shape of the fm
k in the

interpolating regions, and Γ(α, x) =
∫
∞

x
dt tα−1e−t denotes the incomplete Gamma-function.

Furthermore, Z is a constant (actually a matrix in field space) which has to be adjusted in

the following way. If the field of type “a” has a kinetic term −ZaD
2, we set Z = Za for this

1 We do not perform the rescaling k2 → mk2 as in [27].



field to make sure that the eigenvalues of −D2 are cut off precisely at k2, rather than k2/Za

[19]. The scale derivative of (3) is given by

∂tf
m
k (s) = −2

1

m!
(Zsk2)m+1 exp(−Zsk2) (4)

which is indeed independent of Λ. Inserting (4) into (2) and performing the integral we

obtain

∂tTr[lnΩ]reg = 2 Tr
( Zk2

Ω + Zk2

)m+1

(5)

For m integer, in the limit Λ → ∞, Eq.(3) yields the following explicit representation:

fm
k (s) = exp(−Zsk2)

m∑

µ=0

1

µ!
(Zsk2)µ (6)

If we regularize the determinants in (1) with a proper time cutoff then Γ1 and, as a

consequence, the complete one loop effective action becomes k-dependent. We denote it by

Ŝk[g, ḡ] ≡ Ŝ[h̄; ḡ] + Γ1[g, ḡ]reg. Its scale derivative is given by

∂tŜk[g, ḡ] = −1

2
Tr

∫
∞

0

ds

s
∂tf

m
k (s)[exp(−sŜ(2)) − 2 exp(−sS

(2)
gh )] (7)

Up to this point we performed a standard one-loop calculation, with the classical action

Ŝ appearing on the RHS of (7), and the quantum corrected Ŝk on its LHS. Now we perform

a RG-improvement of this one-loop calculation by feeding-back Ŝk into the RHS of (7). This

leads to the following “proper time RG equation” for the functional Ŝk:

∂tŜk[g, ḡ] = −1

2
Tr

∫
∞

0

ds

s
∂tf

m
k (s)[exp(−sŜ

(2)
k ) − 2 exp(−sS

(2)
gh )] (8)

For a detailed discussion of flow equations of this type we refer to the literature [24, 25].

Note that only after the derivatives implicit in Ŝ
(2)
k have been performed one can set g = ḡ

in order to obtain the “ordinary” running action Sk[g] ≡ Ŝk[g, g] since these derivatives are

to be performed at fixed ḡ.

The above flow equation could be generalized to allow for an RG evolution in the ghost

sector. Starting from the standard one-loop effective action Γ1[g, ḡ, ξ, ξ̄]reg in presence of

nonvanishing ghost expectation values ξ = 〈C〉 and ξ̄ = 〈C̄〉, and following the same steps

as above, we arrive at

∂tS̃k[g, ḡ, ξ, ξ̄] = −1

2
STr

∫
∞

0

ds

s
∂tf

m
k (s) exp(−sS̃

(2)
k ) (9)



The functional S̃k[g, ḡ, ξ, ξ̄] is a generalization of Ŝ + Sgh at the tree-, and Ŝ + Sgh +

Γ1[g, ḡ, ξ, ξ̄]reg at the one loop level, respectively. In (9), S̃
(2)
k is a supermatrix involving

derivatives with respect to g, ξ and ξ̄, and the supertrace takes care of the relative minus

sign between the graviton and the ghost contributions. In the present paper we are not

going to use the generalized flow equation (9).

III. THE β-FUNCTIONS OF g AND λ

The RG equation (8) describes a flow on the infinite dimensional space of functionals

Ŝ[g, ḡ]. We can try to obtain nonperturbative solutions (RG trajectories) by truncating this

theory space. In the following we shall consider the Einstein-Hilbert approximation [1] whose

truncated theory space is 2-dimensional. The corresponding ansatz for Ŝk is parametrized

by a k-dependent Newton constant Gk and cosmological constant λ̄k:

Ŝk[g, ḡ] = 2κZNk

∫
ddx

√
g{−R(g) + 2λ̄k} + κ2ZNk

∫
ddx

√
gḡµν(Fαβ

µ gαβ)(Fρσ
ν gρσ) (10)

The first term on the RHS of (10) is the familiar Einstein-Hilbert action in d-dimensions

with the k-dependent couplings. We wrote Gk ≡ Ḡ/ZNk for the running Newton constant,

with a fixed constant Ḡ, and introduced the convenient abbreviation κ = (32Ḡ)−1/2. The

second term of (10) is the gauge fixing term for the background version of the harmonic

coordinate condition [1, 28], with gauge fixing parameter α = 1. The operator Fαβ
µ is given

by Fαβ
µ = δβ

µ ḡαγD̄γ − 1
2
ḡαβD̄µ where the covariant derivative D̄µ is constructed from the

background metric. Note that Fαβ
µ ḡαβ = 0 so that the gauge fixing term drops from (10)

upon setting g = ḡ. The ghost Lagrangian pertaining to this ansatz [1] is ∝ C̄µMµ
νC

ν with

the kinetic operator M ∝ S
(2)
gh given by

M[g, ḡ]µν = ḡµρḡσλD̄λ(gρνDσ + gσνDρ) − ḡρσḡµνD̄λgσνDρ (11)

Next we insert the truncation ansatz into the flow equation (11). As a result, it boils

down to a coupled system of ordinary differential equations for the two functions ZNk and

λ̄k. They are obtained by performing a derivative expansion of the traces on the RHS of (8)

and then comparing the coefficients of the two invariants
∫ √

g and
∫ √

gR on both sides of

the equation. After having performed the second functional derivatives in Ŝ
(2)
k we may set

h̄ = 0. This leads to Ŝ
(2)
k [g, g]µν

ρσ = 2κ2ZNk[−Kµν
ρσD2 + Uµν

ρσ] where



Kµν
ρσ =

1

4
[δµ

ρ δν
σ + δµ

σδν
ρ − gµνgρσ] (12)

and

Uµν
ρσ =

1

4
[δµ

ρ δν
σ + δµ

σδν
ρ − gµνgρσ](R − 2λ̄k) +

1

2
[gµνRρσ + gρσRµν ]

−1

4
[δµ

ρ Rν
σ + δµ

σRν
ρ + δν

ρR
µ

σ + δν
σR

µ
ρ] −

1

2
[Rν

ρ
µ

σ + Rν
σ

µ
ρ] (13)

It is sufficient to retain the terms proportional to
∫ √

g and
∫ √

gR from the derivative

expansion of the traces Tr exp(· · · ) appearing in (8). They can be obtained straightforwardly

by means of standard heat kernel techniques. Since the calculation is similar to (but simpler

than) the one in [1] we omit the details here. Also the subsequent s-integration can be

performed easily in terms of Gamma functions. Equating the result to the LHS of the flow

equation,

∂tŜk[g, g] = 2κ2

∫
ddx

√
g[−R(g)∂tZNk + 2∂t(ZNkλ̄k)] (14)

we obtain two differential equations of the form ∂kZNk = · · · and ∂k(ZNkλ̄k) = · · · . It is

convenient to rewrite them in terms of the dimensionless Newton constant g(k) ≡ kd−2Gk ≡
kd−2Z−1

NkḠ and the dimensionless cosmological constant λ(k) ≡ k−2λ̄k. This leads to the

following system of equations:

∂tg = βg(g, λ) ≡ [d − 2 + ηN ]g (15a)

∂tλ = βλ(g, λ) (15b)

The anomalous dimension ηN ≡ −∂tlnZNk is given by

ηN = 8(4π)1− d

2

[d(7 − 5d)

24
(1 − 2λ)

d

2
−m−2 − d + 6

6

]
g

Γ(m + 2 − d
2
)

Γ(m + 1)
(16)

and the beta-function of λ reads

βλ = −(2 − ηN )λ + 4(4π)1− d

2

[d(d + 1)

4
(1 − 2λ)

d

2
−m−1 − d

]
g
Γ(m + 1 − d

2
)

Γ(m + 1)
(17)

The equations (15) with (16) and (17) are much simpler than their counterparts from the

average action. In particular they do not contain terms (proportional to ηN) stemming from

the differentiation of the Z-factors (see ref.[1]), and they allow for an explicit evaluation of

the threshold functions.



TABLE I: Fixed point values and critical exponents for various values of the cutoff parameter m.

Note the plateau behavior of the universal quantities θ′, θ′′, and λ∗g∗ as the value of m increases.

m g∗ λ∗ λ∗g∗ θ′ θ′′

3/2 0.763 0.192 0.147 2.000 1.658

2 1.663 0.118 0.138 1.834 1.230

3 1.890 0.066 0.125 1.769 1.081

4 2.589 0.046 0.119 1.750 1.001

5 3.281 0.035 0.115 1.742 0.959

6 3.970 0.028 0.113 1.737 0.934

10 6.718 0.016 0.108 1.729 0.886

40 27.271 0.0038 0.103 1.722 0.840

IV. UNIVERSAL QUANTITIES

We have calculated the non-trivial fixed point (g∗, λ∗) 6= 0 in d = 4, implied by the

simultaneous vanishing of βg and βλ in (15), and the critical exponents θ′, θ′′ [3, 4] associated

to the stability matrix for the non-trivial fixed point. The results are depicted in Tab.I for

various values of the cut-off parameter m. The most important result is that the proper time

RG equation, too, predicts a non-Gaussian fixed point. It exists for any value of m. The

nonuniversal coordinates λ∗ and g∗ show a significant m-dependence, and it is impressive to

see how this m-dependence cancels out in the product λ∗g∗ which is universal in an exact

calculation [4]. For every value of m, the stability matrix (−∂iβj), i, j ∈ {g, λ}, has a pair

of complex conjugate eigenvalues θ′ ± iθ′′. Remarkably, those critical exponents and the

product λ∗g∗ tend to constant values as m increases; they form a “plateau”. The universal

quantities θ′,θ′′, and λ∗g∗ show excellent stability properties for this class of regulators,

and these values are in complete agreement with the values found in the framework of the

exact flow equation for the effective average action for gravity [3, 4]. In fact, the differences

between the proper time and the average action RG equations are of the same order of

magnitude as the residual scale dependence which is present in each of the two approaches

and which is due to the truncated theory space.



V. CONCLUSIONS

We have presented a nonperturbative flow equation for gravity which employs a smooth

cutoff function in the proper time integration. The specific cutoff function employed in

this paper is known to give rise to particularly accurate critical exponents in several scalar

theories. The main result of our analysis is to have shown that the non-Gaussian fixed point

exists already in a simple improved 1-loop calculation, an approach less sophisticated than

that of the exact RG equation.

We have then shown that the universal quantities determined by the non-Gaussian fixed

point are in very good agreement with the results from the average action [3, 4, 5], and

in particular, that they show a very weak dependence on the regulator. Our result can be

taken as a further, conceptually different indication that the fixed point is rather “robust”

and should survive also in a more general truncation.
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